Abstract
It was previously shown that red blood cells release ATP when blood oxygen tension decreases. ATP acts on microvascular endothelial cells to produce a retrograde conducted vasodilation (presumably via gap junctions) to the upstream arteriole. These observations form the basis for an ATP hypothesis of local metabolic control of coronary blood flow due to vasodilation in microvascular units where myocardial oxygen extraction is high. Dogs (n = 10) were instrumented with catheters in the aorta and coronary sinus, and a flow transducer was placed around the circumflex coronary artery. Arterial and coronary venous plasma ATP concentrations were measured at rest and during three levels of treadmill exercise by using a luciferin-luciferase assay. During exercise, myocardial oxygen consumption increased approximately 3.2-fold, coronary blood flow increased approximately 2.7-fold, and coronary venous oxygen tension decreased from 19 to 12.9 mmHg. Coronary venous plasma ATP concentration increased significantly from 31.1 to 51.2 nM (P < 0.01) during exercise. Coronary blood flow increased linearly with coronary venous ATP concentration (P < 0.01). Coronary venous-arterial plasma ATP concentration difference increased significantly during exercise (P < 0.05). The data support the hypothesis that ATP is one of the factors controlling coronary blood flow during exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.