Abstract

The production of NOx from air and air + O2 is investigated in a pulsed powered milli‐scale gliding arc (GA) reactor, aiming at a containerized process for fertilizer production. Influence of feed mixture, flow rate, temperature, and Ar and O2 content are investigated at varying specific energy input. The findings are correlated with high‐speed imaging of the GA dynamics. An O2 content of 40–48% was optimum, with an enhancement of 11% in NOx production. Addition of Ar and preheating of the feed resulted in lower NOx production. Lower flow rates produced higher NOx concentrations due to longer residence time in the GA. The volume covered by GA depends strongly on the gas flow rate, emphasizing that the gas flow rate has a major impact on the GA dynamics and the reaction kinetics. For 0.5 L/min, 1.4 vol % of NOx concentration was realized, which is promising for a containerized process plant to produce fertilizer in remote locations. © 2017 American Institute of Chemical Engineers AIChE J, 64: 526–537, 2018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call