Abstract

AbstractStrain‐compensated InGaN/AlGaN structures can enable the growth of thick layers of InGaN epitaxial films far beyond the critical thickness for InGaN grown pseudomorphically to GaN. In this paper, we demonstrate the epitaxial growth of high‐quality strain‐compensated a‐plane In0.12Ga0.88N/Al0.19Ga0.81N superlattices up to 5 times thicker than the critical thickness on free‐standing a‐plane GaN substrates by plasma‐assisted molecular beam epitaxy (PA‐MBE). The superlattices consist of 50 to 200 periods of 10 nm thick In0.12Ga0.88N and 6 nm thick Al0.19Ga0.81N layers. The structures are characterized using a double crystal X‐ray diffractometer, asymmetric reciprocal space mapping, and atomic force microscopy. We use X‐ray diffraction to determine the strain, composition, degree of relaxation, and superlattice period of our samples. The structural characteristics of periodic structures containing from 50 to 200 periods are compared to single layer, uncompensated In0.12Ga0.88N films. A 100 period structure exhibited only 15% relaxation compared to 69% relaxation for the bulk In0.12Ga0.88N film grown with the same total InGaN thickness but without strain‐compensating layers. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.