Abstract

By using a plasma jet (PJ) torch with 1.5 kW input power as an igniter, successful ignition for liquid-kerosene fueled combustion experiment was conducted in a direct-connected supersonic test facility. The incoming flow has total temperature of 950 K and local Mach number of 1.8, corresponding to Mach 4 flight condition. In this study, several optical techniques, including high speed photography, high speed schlieren photography, and planar laser scattering (PLS) technique, were combined to study the ignition process, flame propagation, and mixing features of liquid kerosene fuel with air around the cavity. The effect of fuel injection position, injection pressure, and feedstock gas on ignition performance has been analyzed. The results indicate that local mixing is a critical factor for ignition. It is also shown that the PJ torch with N2+H2 feedstock is superior to the PJ torch with N2 feedstock for the ignition of liquid-kerosene fuel. These results are valuable for the future optimization of kerosene-fueled scramjet engine when using a PJ torch as an igniter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.