Abstract

The APOEɛ4 gene variant is the strongest genetic risk factor for Alzheimer's disease (AD), whereas APOEɛ3 conventionally is considered as 'risk neutral' although APOEɛ3-carriers also develop AD. Previous studies have shown that the apolipoprotein E3 (apoE3) isoform occurs as monomers, homodimers and heterodimers with apolipoprotein A-II in human body fluids and brain tissue, but the relevance of a plasma apoE3 monomer/dimer profile to AD is unknown. Here we assessed the distribution of monomers, homodimers and heterodimers in plasma from control subjects and patients with mild cognitive impairment (MCI) and AD with either a homozygous APOEɛ3 (n = 31 control subjects, and n = 14 MCI versus n = 5 AD patients) or APOEɛ4 genotype (n = 1 control subject, n = 21 MCI and n = 7 AD patients). Total plasma apoE levels were lower in APOEɛ4-carriers and overall correlated significantly to CSF Aβ42, p(Thr181)-tau and t-tau levels. Apolipoprotein E dimers were only observed in the APOEɛ3-carriers and associated with total plasma apoE levels, negatively correlated to apoE monomers, but were unrelated to plasma homocysteine levels. Importantly, the APOEɛ3-carrying AD patients versus controls exhibited a significant decrease in apoE homodimers (17.8±9.6% versus 26.7±6.3%, p = 0.025) paralleled by an increase in apoE monomers (67.8±18.3% versus 48.5±11.2%, p = 0.008). In the controls, apoE monomers and heterodimers were significantly associated with plasma triglycerides; the apoE heterodimers were also associated with levels of high-density lipoprotein cholesterol. The physiological relevance of apoE dimer formation needs to be further investigated, though the distribution of apoE in monomers and dimers appears to be of relevance to AD in APOEɛ3 subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call