Abstract

IntroductionMicroRNAs (miRNAs), endogenous small noncoding RNAs regulating the activities of target mRNAs and cellular processes, are present in human plasma in a stable form. In this study, we investigated whether miRNAs are also stably present in synovial fluids and whether plasma and synovial fluid miRNAs could be biomarkers of rheumatoid arthritis (RA) and osteoarthritis (OA).MethodsWe measured concentrations of miR-16, miR-132, miR-146a, miR-155 and miR-223 in synovial fluid from patients with RA and OA, and those in plasma from RA, OA and healthy controls (HCs) by quantitative reverse transcription-polymerase chain reaction. Furthermore, miRNAs in the conditioned medium of synovial tissues, monolayer fibroblast-like synoviocytes, and mononuclear cells were examined. Correlations between miRNAs and biomarkers or disease activities of RA were statistically examined.ResultsSynovial fluid miRNAs were present and as stable as plasma miRNAs for storage at -20°C and freeze-thawing from -20°C to 4°C. In RA and OA, synovial fluid concentrations of miR-16, miR-132, miR-146a, and miR-223 were significantly lower than their plasma concentrations, and there were no correlation between plasma and synovial fluid miRNAs. Interestingly, synovial tissues, fibroblast-like synoviocytes, and mononuclear cells secreted miRNAs in distinct patterns. The expression patterns of miRNAs in synovial fluid of OA were similar to miRNAs secreted by synovial tissues. Synovial fluid miRNAs of RA were likely to originate from synovial tissues and infiltrating cells. Plasma miR-132 of HC was significantly higher than that of RA or OA with high diagnosability. Synovial fluid concentrations of miR-16, miR-146a miR-155 and miR-223 of RA were significantly higher than those of OA. Plasma miRNAs or ratio of synovial fluid miRNAs to plasma miRNAs, including miR-16 and miR-146a, significantly correlated with tender joint counts and 28-joint Disease Activity Score.ConclusionsPlasma miRNAs had distinct patterns from synovial fluid miRNAs, which appeared to originate from synovial tissue. Plasma miR-132 well differentiated HCs from patients with RA or OA, while synovial fluid miRNAs differentiated RA and OA. Furthermore, plasma miRNAs correlated with the disease activities of RA. Thus, synovial fluid and plasma miRNAs have potential as diagnostic biomarkers for RA and OA and as a tool for the analysis of their pathogenesis.

Highlights

  • MicroRNAs, endogenous small noncoding RNAs regulating the activities of target mRNAs and cellular processes, are present in human plasma in a stable form

  • We examined the differences in the expression of plasma miRNAs or in synovial fluid miRNAs between rheumatoid arthritis (RA), OA and healthy control (HC), and the correlation of plasma or synovial fluid miRNAs with disease activities of RA

  • We investigated the stability of plasma and synovial fluid miRNAs for the storage at -20°C and freeze-thaw cycles from -20°C to 4°C

Read more

Summary

Introduction

MicroRNAs (miRNAs), endogenous small noncoding RNAs regulating the activities of target mRNAs and cellular processes, are present in human plasma in a stable form. We investigated whether miRNAs are stably present in synovial fluids and whether plasma and synovial fluid miRNAs could be biomarkers of rheumatoid arthritis (RA) and osteoarthritis (OA). MicroRNAs (miRNAs) are endogenous small (approximately 22 nucleotides) noncoding RNAs and regulate the activities of target mRNAs by binding at sites in the 3' untranslated region of the mRNAs [1,2], and currently. The expressions of miR-155, miR146a, and miR-124a in RA fibroblast-like synoviocytes (FLSs); miR-146 and miR-155 in RA synovial tissue; or miR-146a, miR-155, miR-132, and miR-16 in RA peripheral blood (PB) mononuclear cells (MNCs) are upregulated compared with osteoarthritis (OA) or healthy controls (HCs) [18,19,20,21]. We examined the differences in the expression of plasma miRNAs or in synovial fluid miRNAs between RA, OA and HC, and the correlation of plasma or synovial fluid miRNAs with disease activities of RA

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.