Abstract
Plasma actuators have demonstrated great potential for active flow control applications, including boundary layer control, flow separation delay, turbulence control, and aircraft noise reduction. In particular, the material used as a dielectric barrier is crucial for the proper operation of the device. Currently, the variety of dielectrics reported in the literature is still quite restricted to polymers including Kapton, Teflon, poly(methyl methacrylate) (PMMA), Cirlex, polyisobutylene (PIB) rubber, or polystyrene. Nevertheless, several studies have highlighted the fragilities of polymeric dielectric layers when actuators operate at significantly high-voltage and -frequency levels or for long periods. In the current study, we propose the use of alumina-based ceramic composites as alternative materials for plasma actuator dielectric layers. The alumina composite samples were fabricated and characterized in terms of microstructure, electrical parameters, and plasma-induced flow velocity and compared with a conventional Kapton-based actuator. It was concluded that alumina-based dielectrics are suitable materials for plasma actuator applications, being able to generate plasma-induced flow velocities of approximately 4.5 m/s. In addition, it was verified that alumina-based ceramic actuators can provide similar fluid mechanical efficiencies to Kapton actuators. Furthermore, the ceramic dielectrics present additional characteristics, such as high-temperature resistance, which are not encompassed by conventional Kapton actuators, which makes them suitable for high-temperature applications such as turbine blade film cooling enhancement and plasma-assisted combustion. The high porosity of the ceramic results in lower plasma-induced flow velocity and lower fluid mechanical efficiency, but by minimizing the porosity, the fluid mechanical efficiency is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.