Abstract

Increasing evidence indicates that water activated by plasma discharge, termed as plasma-activated water (PAW), can promote plant growth and enhance plant defence responses. Nevertheless, the signalling pathways activated in plants in response to PAW are still largely unknown. In this work, we analysed the potential involvement of calcium as an intracellular messenger in the transduction of PAW by plants. To this aim, Arabidopsis thaliana (Arabidopsis) seedlings stably expressing the bioluminescent Ca2+ reporter aequorin in the cytosol were challenged with PAW generated by a plasma torch. Ca2+ measurement assays demonstrated the induction by PAW of rapid and sustained cytosolic Ca2+ elevations in Arabidopsis seedlings. The dynamics of the recorded Ca2+ signals were found to depend upon different parameters, such as the operational conditions of the torch, PAW storage, and dilution. The separate administration of nitrate, nitrite, and hydrogen peroxide at the same doses as those measured in the PAW did not trigger any detectable Ca2+ changes, suggesting that the unique mixture of different reactive chemical species contained in the PAW is responsible for the specific Ca2+ signatures. Unveiling the signalling mechanisms underlying plant perception of PAW may allow to finely tune its generation for applications in agriculture, with potential advantages in the perspective of a more sustainable agriculture.

Highlights

  • Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air

  • Arabidopsis thaliana (Arabidopsis) seedlings stably expressing the bioluminescent Ca2+ reporter aequorin in the cytosol were challenged with plasmaactivated water (PAW) generated by a plasma torch

  • The separate administration of nitrate, nitrite, and hydrogen peroxide at the same doses as those measured in the PAW did not trigger any detectable Ca2+ changes, suggesting that the unique mixture of different reactive chemical species contained in the PAW is responsible for the specific Ca2+ signatures

Read more

Summary

Introduction

Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.