Abstract

Media exposed to atmospheric pressure plasma (APP) produce reactive oxygen and nitrogen species (RONS), with hydrogen peroxide (H2O2), nitrite (NO2-), and nitrate (NO3-) being among the most detected species due to their relatively long lifetime. In this study, a standardized microwave-excited (ME) APP jet (APPJ) source was employed to produce gaseous RONS to treat liquid samples. The source was a commercially available plasma jet, which generated argon plasma utilizing a coaxial transmission line resonator at the operating frequency of 2.45 GHz. An ultraviolet-visible spectrophotometer was used to measure the concentrations of H2O2 and NO3- in plasma-activated media (PAM). Three different types of media (deionized water, Hank's balanced salt solution, and cell culture solution Dulbecco's modified eagles medium [DMEM]) were utilized as liquid samples. Among these media, the plasma-treated DMEM was observed to have the highest levels of H2O2 and NO3-. Subsequently, the feasibility of using argon ME-APPJ-activated DMEM (PAM) as an adjuvant to enhance the therapeutic effects of cisplatin on human bladder cancer cells (T-24) was investigated. Various cancer cell lines, including T-24 cells, treated with PAM were observed in vitro for changes in cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. A viability reduction was detected in the various cancer cells after incubation in PAM. Furthermore, the study's results revealed that PAM was effective against cisplatin-resistant T-24 cells in vitro. In addition, a possible connection between HER expression and cell viability was sketched.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call