Abstract

In the oral cavity, dental implants are exposed to an environment rich in various microbes that can produce infectious biofilms on the implant surface. Here we report the development of two distinct antimicrobial coatings that prevent biofilm formation by fungi or bacteria. The antimicrobial peptides Mel4 and caspofungin were immobilized on titanium surfaces through reactions with radicals embedded within a mechanically robust, ion-assisted plasma polymerized (PP) film. The immobilization does not require additional chemical reagents and is achieved by simply incubating the surfaces at room temperature in a buffer solution containing the antimicrobial agent. The antibiotic-functionalized surfaces were rigorously washed with hot sodium dodecyl sulphate (SDS) to remove physisorbed molecules, and analyzed by time of flight secondary ion mass spectrometry (ToF-SIMS), which revealed characteristic fragments of the peptides and provided strong evidence for the covalent nature of the binding between the molecules and the PP coating. Both Candida albicans and Staphylococcus aureus pathogens were significantly inhibited in their ability to colonize the surfaces and form biofilms. Our findings suggest that antimicrobial surfaces fabricated using ion-assisted plasma polymerization have great potential for coatings on biomedical devices where activity against fungal and bacterial pathogens is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.