Abstract

The derivation procedure of exact ground-states for the periodic Anderson model (PAM) in restricted regions of the parameter space and D=2 dimensions using plaquette operators is presented in detail. Using this procedure, we are reporting for the first time exact ground-states for PAM in 2D and finite value of the interaction, whose presence do not require the next to nearest neighbor extension terms in the Hamiltonian. In order to do this, a completely new type of plaquette operator is introduced for PAM, based on which a new localized phase is deduced whose physical properties are analyzed in detail. The obtained results provide exact theoretical data which can be used for the understanding of system properties leading to metal-insulator transitions, strongly debated in recent publications in the frame of PAM. In the described case, the lost of the localization character is connected to the break-down of the long-range density-density correlations rather than Kondo physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.