Abstract

BackgroundThe underlying pathophysiology of BA distribution is unclear and intriguing. Using high-resolution magnetic resonance imaging (HR-MRI), we sought to explore the plaque distribution of low-grade basilar artery (BA) atherosclerosis and its clinical relevance.MethodsWe retrospectively analyzed the imaging and clinical data of 61 patients with low-grade atherosclerotic BA stenosis (<50%). On HR-MRI, the plaques were categorized based on the involvement of the ventral, dorsal, or lateral sides of BA wall. A culprit plaque was defined if it was on the same slice or neighboring slices of symptomatic pontine infarcts and played a probable causal role (dorsal plaques with median pontine infarcts or lateral plaques with ipsilateral pontine infarcts). The relationships between plaque distribution and clinical presentations were analyzed.ResultsTwenty-five symptomatic and thirty-six asymptomatic BAs with 752 HR-MRI image slices were studied. The average length of BA atherosclerosis plaques was 12.16 ± 5.61mm (10.30 ± 6.44mm in symptomatic and 13.46 ± 7.03mm in asymptomatic patients, p = 0.079). The plaque distribution was similar at ventral (29.0%), dorsal (37.6%) and lateral walls (33.1%). The BA plaques in symptomatic patients were more frequently located at the dorsal (42.5%) and lateral (41.2%) walls than at the ventral walls (16.1%; P < 0.05). Compared with symptomatic patients, asymptomatic patients more likely had their plaques distributed at the ventral walls (P = 0.022). Culprit plaques were observed in 85.0% (17/20) pontine infarcts in symptomatic patients and only 14.3% (2/14) silent pontine infarcts in asymptomatic patients (p < 0.001).ConclusionsLow-grade BA atherosclerosis has a long distribution and evenly involves ventral, dorsal and lateral walls. The plaques at dorsal and lateral walls are associated with symptomatic pontine infarcts but not with silent infarcts.

Highlights

  • The underlying pathophysiology of basilar artery (BA) distribution is unclear and intriguing

  • In coronary artery and middle cerebral artery atherosclerosis, plaques naturally tend to form at the positions opposite to the orifices of branch or penetrating arteries [2, 3]

  • Seventy and four patients with BA plaque were considered for enrollment

Read more

Summary

Introduction

Using high-resolution magnetic resonance imaging (HR-MRI), we sought to explore the plaque distribution of low-grade basilar artery (BA) atherosclerosis and its clinical relevance. In coronary artery and middle cerebral artery atherosclerosis, plaques naturally tend to form at the positions opposite to the orifices of branch or penetrating arteries [2, 3]. Once the plaques locate near the perforating orifices, they are Basilar artery (BA) is the largest artery in the posterior circulation and forms the central core of this vascular territory. It gives rise to many side branches which can be divided into three groups: the cerebellar arteries, cerebral hemisphere branches and the perforating arteries [4]. To provide deep insight of the pathophysiology of BA atherosclerosis, in this study, we systematically described and compared the plaque distributions of

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call