Abstract

Both ecological theory and empirical evidence suggest that negative frequency dependent feedbacks structure plant communities, but integration of these findings has been limited. Here we develop a generic model of frequency dependent feedback to analyze coexistence and invasibility in random theoretical and real communities for which frequency dependence through plant-soil feedbacks (PSFs) was determined empirically. We investigated community stability and invasibility by means of mechanistic analysis of invasion conditions and numerical simulations. We found that communities fall along a spectrum of coexistence types ranging from strict pair-wise negative feedback to strict intransitive networks. Intermediate community structures characterized by partial intransitivity may feature “keystone competitors” which disproportionately influence community stability. Real communities were characterized by stronger negative feedback and higher robustness to species loss than randomly assembled communities. Partial intransitivity became increasingly likely in more diverse communities. The results presented here theoretically explain why more diverse communities are characterized by stronger negative frequency dependent feedbacks, a pattern previously encountered in observational studies. Natural communities are more likely to be maintained by strict negative plant-soil feedback than expected by chance, but our results also show that community stability often depends on partial intransitivity. These results suggest that plant-soil feedbacks can facilitate coexistence in multi-species communities, but that these feedbacks may also initiate cascading effects on community diversity following from single-species loss.

Highlights

  • Understanding the maintenance of biodiversity through the coexistence of apparent competitors is one of the central challenges in ecology

  • Ecological theory suggests that negative frequency dependent feedbacks preventing exclusion of the least fit species is a necessary requirement for coexistence [1,2]

  • We begin our more detailed analysis by walking through the 2-species solution which recovers previous results [11, 29] because we will be using the same graphical analysis for the 3-species case. This graphical analysis is a useful tool as it provides an intuitive framework for thinking about how partial intransitivity can stabilize multi-species communities

Read more

Summary

Introduction

Understanding the maintenance of biodiversity through the coexistence of apparent competitors is one of the central challenges in ecology. Ecological theory suggests that negative frequency dependent feedbacks preventing exclusion of the least fit species is a necessary requirement for coexistence [1,2]. In plant communities, such feedbacks were traditionally thought to be the result of competition for abiotic resources [3,4,5]. DEB -1738041, (https://www.nsf.gov/) to MBE and JDB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call