Abstract

This study was designed to provide tissue distribution data of 244Cm that was inhaled by beagle dogs. Two chemical forms that were presumed to bracket the solubility of pure Cm compounds in vivo were used: 244Cm2O3 (oxide) and 244Cm(NO3)3 (nitrate). Adult dogs of both sexes received a single brief pernasal exposure to either a monodisperse aerosol of 244Cm2O3 (1.4 micron activity median aerodynamic diameter, AMAD, and 1.16 geometric standard deviation, sigma g) or a polydisperse aerosol of 244Cm(NO3)3 (1.1 micron AMAD, 1.74 sigma g). The resulting initial pulmonary burdens (IPB) were 1.5 and 1.7 kBq kg-1 body mass for the oxide and nitrate groups, respectively. The tissue distribution data obtained from the dogs that were serially sacrificed from 4 h to 2 y after exposure showed that both chemical forms were very soluble in vivo. For the oxide group, 78% IPB was cleared from the lung with a T 1/2 of 7.6 d, whereas for the nitrate group, 42% IPB cleared with a T 1/2 of 0.6 d. The lung retention for each group was described by three-component exponential functions. Most of the Cm that cleared the lung was redeposited in the liver (37% IPB) and skeleton (27% IPB), with lesser amounts in the muscle, fat and connective tissue (3.5% IPB) and kidney (approximately 2% IPB). The only significant difference noted in the biokinetics of Cm for the two exposure groups was a more rapid translocation of Cm from the lung to liver and bone during the first 10-20 d after exposure to the nitrate compared to the oxide chemical form. Extrapolation of these data to obtain estimates of committed dose equivalents for man indicate substantial agreement with the limits for occupational exposure specified by ICRP 30 (1979).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.