Abstract

Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9) mutant. While the technology was developed with Arabidopsis plants, it is suitable to characterize plants of other species including crops, in a simple, affordable and fast way. PlantSize is publicly available (http://www.brc.hu/pub/psize/index.html).

Highlights

  • Plant phenotype is determined by the genetic background and environmental conditions

  • Protocols for quantitative analysis of rosette size, shape and color were developed, which allowed the simultaneous determination of growth rates, convex areas and percentages as well as measurement of chlorophyll and anthocyanin contents

  • Images were imported to PlantSize and were processed to generate numerical data of various parameters describing size, shape and color of the plants identified on the image (Figure 1A and Supplementary Figure S2)

Read more

Summary

Introduction

Plant phenotype is determined by the genetic background and environmental conditions. Interaction of the genotype and environmental factors influences plant growth and development, physiological and molecular traits. Characterization of phenotypes requires precise description and monitoring of multiple structural and physiological traits. Non-destructive Measurement of Plant Size and Color are available to measure plant size, shape, and structure at different levels, and get information about numerous physiological and molecular characters. While classical methods are generally precise and reliable, they usually destroy the plant, and provide information at the endpoint of the experiment. Standard physiological techniques often require numerous analytical steps and measurements, making large-scale analysis difficult or impossible. Analysis of large number of plants is a time-consuming and error-prone procedure

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.