Abstract

Arabidopsis thaliana plants lacking the PSI-H or PSI-L subunit of photosystem I have been shown to be severely affected in their ability to perform state transitions, but no visual phenotype was observed when these plants were grown under different light quantities and qualities. However, the chloroplasts in the PSI-H- and PSI-L-less plants contained fewer and more extended grana stacks. The plants lacking PSI-H or PSI-L were characterised with respect to their photosynthetic performance. Wild-type plants adjusted the non-photochemical fluorescence quenching to maintain constant levels of PSII quantum yield and reduction of the plastoquinone pool. In contrast, the plants deficient in state transitions had a more reduced plastoquinone pool and consequently, a less efficient PSII-photochemistry under growth-light conditions and in state 2. The maximal photosynthetic capacity and the quantum efficiency of oxygen evolution were diminished by 8-14% in the PSI-H-less plants. Under growth-light conditions, the stroma was similarly reduced in the PSI-H-less plants and the rate of cyclic electron transport was unchanged. Pigment analysis showed that the xanthophyll cycle was not upregulated in order to compensate for the lack of state transitions. In general, the plants lacking PSI-H and PSI-L showed a decreased ability to optimise photosynthesis according to the light conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call