Abstract

The development of new genetic modification techniques (nGMs), also referred to as “new (breeding) techniques” in other sources, has raised worldwide discussions regarding their regulation. Different existing regulatory frameworks for genetically modified organisms (GMO) cover nGMs to varying degrees. Coverage of nGMs depends mostly on the regulatory trigger. In general two different trigger systems can be distinguished, taking into account either the process applied during development or the characteristics of the resulting product. A key question is whether regulatory frameworks either based on process- or product-oriented triggers are more advantageous for the regulation of nGM applications. We analyzed regulatory frameworks for GMO from different countries covering both trigger systems with a focus on their applicability to plants developed by various nGMs. The study is based on a literature analysis and qualitative interviews with regulatory experts and risk assessors of GMO in the respective countries. The applied principles of risk assessment are very similar in all investigated countries independent of the applied trigger for regulation. Even though the regulatory trigger is either process- or product-oriented, both triggers systems show features of the respective other in practice. In addition our analysis shows that both trigger systems have a number of generic advantages and disadvantages, but neither system can be regarded as superior at a general level. More decisive for the regulation of organisms or products, especially nGM applications, are the variable criteria and exceptions used to implement the triggers in the different regulatory frameworks. There are discussions and consultations in some countries about whether changes in legislation are necessary to establish a desired level of regulation of nGMs. We identified five strategies for countries that desire to regulate nGM applications for biosafety–ranging from applying existing biosafety frameworks without further amendments to establishing new stand-alone legislation. Due to varying degrees of nGM regulation, international harmonization will supposedly not be achieved in the near future. In the context of international trade, transparency of the regulatory status of individual nGM products is a crucial issue. We therefore propose to introduce an international public registry listing all biotechnology products commercially used in agriculture.

Highlights

  • Modified (GM) crop plants developed by recombinant DNA technology are regulated in most countries by biosafety frameworks established by specific legislation

  • The countries investigated in this study including the EU have not implemented specific regulations for nGM applications, which are independent from the existing regulatory biosafety frameworks for GMOs

  • Other countries have introduced (Argentina, Brasil) or have proposed to introduce specific criteria (Australia) to determine different types of genome editing applications are or will be covered by the biosafety frameworks of these countries. These criteria are mostly aimed at improving regulatory certainty for authorities and applicants. This is done either by providing further clarifications to the trigger definitions included in the respective biosafety laws, e.g., using the presence or absence of recombinant DNA constructs to clarify if a “novel combination of genetic material” was established or if “genetic engineering technique(s)” were used or by introducing a clear way to distinguish between different types of genome editing applications(e.g., SDN-1 applications without the use of nucleic acid sequences supplied as repair template(s) in trans and SDN-2, SDN-3 and oligonucleotide-directed mutagenesis (ODM) applications which use such template DNA(s) to direct genetic modifications)

Read more

Summary

Introduction

Modified (GM) crop plants developed by recombinant DNA (rDNA) technology are regulated in most countries by biosafety frameworks established by specific legislation. Differences exist between the countries regarding the determination of the regulatory status of an application, (i.e., the initial decision on whether a particular product, e.g., an nGM application, is covered by the respective biosafety legislation or not).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.