Abstract

Transgenic plants, seeds, and cultured plant cells are potentially one of the most economical systems for large-scale production of recombinant proteins for industrial and pharmaceutical uses. Biochemical, technical, and economic concerns with current production systems have generated enormous interest in developing plants as alternative production systems. However, various challenges must be met before plant systems can fully emerge as suitable, viable alternatives to current animal-based systems for large-scale production of biopharmaceuticals and other products. Aside from regulatory issues and developing efficient methods for downstream processing of recombinant proteins, there are at least two areas of challenge: (1) Can we engineer plant cells to accumulate recombinant proteins to sufficient levels? (2) Can we engineer plant cells to post-translationally modify recombinant proteins so that they are structurally and functionally similar to the native proteins? Attempts to improve the accumulation of a recombinant protein in plant cells require an appreciation of the processes of gene transcription, mRNA stability, processing, and export, and translation initiation and efficiency. Likewise, many post-translational factors must be considered, including protein stability, protein function and activity, and protein targeting. Moreover, we need to understand how the various processes leading from the gene to the functional protein are interdependent and functionally linked. Manipulation of the post-translational processing machinery of plant cells, especially that for N-linked glycosylation and glycan processing, is a challenging and exciting area. The functions of N-glycan heterogeneity and microheterogeneity, especially with respect to protein function, stability, and transport, are poorly understood and this represents an important area of cell biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call