Abstract

Centralized manufacturing methods have been increasingly implemented in the food manufacturing sector. Proving to be more cost-efficient in terms of production, centralization also involves rigid and lengthy supply chains with high environmental and cost impacts. Distributed manufacturing, based on local production at small scale, represents an alternative that could provide flexibility to the currently established centralized supply chains, together with environmental and social benefits. A modeling tool for process design, evaluation and comparison of different centralized and decentralized manufacturing scenarios, both in economic and environmental terms, is presented in this work. The production of a dried food product (cereal baby porridge) has been chosen as a case study. Three decentralized – (i) Home Manufacturing (HM), (ii) Food Incubator (FI), (iii) Distributed Manufacturing (DM) – and two centralized – (iv) Single Plant (SP) and (v) Multi-plant (MP) – production scales were evaluated for throughput values ranging from 0.5 kg/h to 6000 kg/h, and different operational regions (i.e. unfeasible, transition and plateau) were identified for each scale. A production scenario using UK dry baby food demand was also studied. The most decentralized scales (HM and FI) become profitable (i.e. production cost below market prices) at very low production rates (e.g. 1 kg/h) that industrial manufacturing (showing a lower boundary for SP profitability at 200 kg/h) cannot achieve. HM and FI remain competitive to SP at national demands such as UK dimension — HM has a cost just 1% higher. DM scenarios require low management costs to represent an efficient alternative to SP. Finally, for equal power source, decentralized manufacture does not imply saving in energy or greenhouse gases emissions (GHG) but demand more manpower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.