Abstract
Climate change can affect plant–pollinator interactions in a variety of ways, but much of the research attention has focused on whether independent shifts in phenology will alter temporal overlap between plants and pollinators. Here I review the research on plant–pollinator mismatch, assessing the potential for observational and experimental approaches to address particular aspects of the problem. Recent, primarily observational studies suggest that phenologies of co‐occurring plants and pollinators tend to respond similarly to environmental cues, but that nevertheless, certain pairs of interacting species are showing independent shifts in phenology. Only in a few cases, however, have these independent shifts been shown to affect population vital rates (specifically, seed production by plants) but this largely reflects a lack of research. Compared to the few long‐term studies of pollination in natural plant populations, experimental manipulations of phenology have yielded relatively optimistic conclusions about effects of phenological shifts on plant reproduction, and I discuss how issues of scale and frequency‐dependence in pollinator behaviour affect the interpretation of these ‘temporal transplant’ experiments. Comparable research on the impacts of mismatch on pollinator populations is so far lacking, but both observational studies and focused experiments have the potential to improve our forecasts of pollinator responses to changing phenologies. Finally, while there is now evidence that plant–pollinator mismatch can affect seed production by plants, it is still unclear whether this phenological impact will be the primary way in which climate change affects plant–pollinator interactions. It would be useful to test the direct effects of changing climate on pollinator population persistence, and to compare the importance of phenological mismatch with other threats to pollination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.