Abstract

This paper reports on patterns in plant-mediated processes that determine the rate of nutrient cycling in temperate fens and bogs. We linked leaf-level nutrient dynamics with leaf-litter decomposition and explored how the observed patterns were reflected in nutrient cycling at the ecosystem level. Comparisons were made among growth forms (evergreen and deciduous shrubs and trees, graminoids and Sphagnum mosses) and between mire types (fens and bogs). A literature review showed that the predominant growth form was more important as a determinant of leaf-level nutrient-use efficiency (NUE) than mire type (fen vs. bog). Evergreens had the highest N and P use efficiency. The growth form differences in NUE were mainly determined by differences in N and P concentrations in mature leaves and not by differences in resorption efficiency from senescing leaves. Sphagnum leaves had lower N and P concentrations than the other growth forms, but because of a lack of data on nutrient resorption efficiency the NUE of these mosses could not be calculated. Nitrogen use efficiency did not differ among fen and bog species, whereas bog species had a higher P use efficiency than fen species. However, a complete evaluation of mire-type or growth-form effects on NUE is only possible when data become available about nutrient resorption from senescing Sphagnum leaves. As leaf-level NUE is negatively correlated with leaf-litter nutrient concentrations, there is a direct link between NUE and litter decomposition rate. Rates of litter decomposition of Sphagnum mosses are lower than in the other growth forms, but there is still much speculation about possible reasons. The role of litter chemistry of Sphagnum mosses (including decay inhibitors and decay-resistant compounds) in decomposition especially warrants further study. The strongly deviating nutritional ecology of Sphagnum mosses clearly distinguishes fens and bogs from other ecosystems. Moreover, N and P concentrations in mature leaves from vascular plant species from fens and bogs are in almost all cases lower and leaf-level N use efficiency is higher than in species from other ecosystems, irrespective of the growth form considered. Both literature data and data from a comparative study on soil nutrient cycling in temperate fens and bogs in the United States (Maryland), The Netherlands, and Poland showed that nutrient mineralization did not differ clearly between fens and bogs. The comparative study further showed that cellulose decomposition in bogs was lower than in fens and that nutrient mineralization was higher in forested than in herbaceous mires. The occurrence of dominant growth forms was clearly related to soil nutrient-cycling processes, and observed patterns were in agreement with patterns in the components of NUE as found in the literature study. We conclude that a protocol with standardized procedures for measuring various nutrient-cycling process rates that is used by scientists in various wetland types and geographical regions is a useful tool for unravelling large-scale patterns in soil nutrient-cycling processes in wetlands and for linking plant-mediated nutrient dynamics with ecosystem nutrient-cycling processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call