Abstract

Lilium brownii F.E.Br. ex Miellez var. giganteum G. Y. Li & Z. H. Chen, an endangered valuable genetic resource, was used to establish and optimize a callus propagation system and to investigate the effects of internal and external phytohormones for the purpose of germplasm conservation. Of the combinations and concentrations of auxins and cytokinins examined, Murashige and Skoog (MS) medium supplemented with 8 g L−1 agar, 30 g L−1 sucrose, 0.45 μM 2,4-dichlorophenoxyacetic acid, 2.69 to 5.37 μM α-naphthaleneacetic acid, and 0.44 μM 6-benzyladenine, 0.45 μM thidiazuron, and 0.28 μM zeatin riboside generated the best results, effectively promoting callus proliferation. Four callus types could be discriminated, of which type A (yellowish, granular) and type B (yellow, medium-granular) were dry, friable, and grew well. Periodic acid-Schiff staining revealed small and regular cells, with numerous starch granules surrounding each nucleus. In culture, callus clumps produced an average of 14.33 shoots under “MS + 7-d-dark–light” treatment with 100% regeneration frequency. Bulblets formed within 60 d after shoot transfer to bulblet formation medium. Type A and B callus was likely to be embryogenic, according to morphology, cytology, and high shoot regenerating capacity. Examination of endogenous phytohormone levels showed that the abscisic acid to indole-3-acetic acid (ABA/IAA) ratio gradually increased with increasing diameter of callus clumps treated with all exogenous phytohormones, except zeatin riboside, leading to the hypothesis that callus induction competence was closely associated with endogenous ABA/IAA ratio. This first report should assist further genetic studies of this rare Lilium and other bulbous plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call