Abstract

Traditionally, plant viruses are viewed as harmful, undesirable pathogens. However, their genomes can provide several useful 'designer functions' or 'sequence modules' with which to tailor future gene vectors for plant or general biotechnology. The majority (77%) of known plant viruses have single-stranded RNA of the messenger (protein coding) sense as their genetic material. Over the past 4 years, improved in vitro transcription systems and the construction of partial or full-length DNA copies of several plant RNA viruses have enhanced our ability to manipulate and study their genomes, particularly in the context of their pathogenic interactions with host plants. Recently, two forms of genetically engineered protection against plant virus infections have been reported. In both, a virus-related 'interfering' molecule was stably introduced into plants via the DNA-transfer mechanism of Agrobacterium tumefaciens. To date, the choice of 'interfering' molecule has been guided by empirical field-observations and each is effective against only a narrow range of closely-related viruses. As yet, we do not fully understand the molecular mechanism(s) responsible for the observed protection. The ability to manipulate the plant-pathogen relationship is a powerful tool to increase our knowledge and improve future strategies for unconventional cropprotection by genetic engineering techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.