Abstract

BackgroundThe geminivirus and nanovirus families of DNA plant viruses have proved to be a fertile source of viral genomic sequences, clearly demonstrated by the large number of sequence entries within public DNA sequence databases. Due to considerable conservation in genome organization, these viruses contain easily identifiable intergenic regions that have been found to contain multiple DNA sequence elements important to viral replication and gene regulation. As a first step in a broad screen of geminivirus and nanovirus intergenic sequences for DNA segments important in controlling viral gene expression, we have 'mined' a large set of viral intergenic regions for transcriptional enhancers. Viral sequences that are found to act as enhancers of transcription in plants are likely to contribute to viral gene activity during infection.ResultsDNA sequences from the intergenic regions of 29 geminiviruses or nanoviruses were scanned for repeated sequence elements to be tested for transcription enhancing activity. 105 elements were identified and placed immediately upstream from a minimal plant-functional promoter fused to an intron-containing luciferase reporter gene. Transient luciferase activity was measured within Agrobacteria-infused Nicotiana tobacum leaf tissue. Of the 105 elements tested, 14 were found to reproducibly elevate reporter gene activity (>25% increase over that from the minimal promoter-reporter construct, p < 0.05), while 91 elements failed to increase luciferase activity. A previously described "conserved late element" (CLE) was identified within tested repeats from 5 different viral species was found to have intrinsic enhancer activity in the absence of viral gene products. The remaining 9 active elements have not been previously demonstrated to act as functional promoter components.ConclusionBiological significance for the active DNA elements identified is supported by repeated isolation of a previously defined viral element (CLE), and the finding that two of three viral enhancer elements examined were markedly enriched within both geminivirus sequences and within Arabidopsis promoter regions. These data provide a useful starting point for virologists interested in undertaking more detailed analysis of geminiviral promoter function.

Highlights

  • The geminivirus and nanovirus families of DNA plant viruses have proved to be a fertile source of viral genomic sequences, clearly demonstrated by the large number of sequence entries within public DNA sequence databases

  • For this first broad screen, the experimental rational used made two basic assumptions; 1} that viral intergenic regions contain an enrichment of DNA transcriptional regulatory elements; and 2} that important regulatory sequence elements are often duplicated within promoters, either directly repeated, or as inverted copies of sequence segments [22]

  • Generated using different search criteria than those employed by Arguello-Astorga et al [22], the resulting collection of geminivirus sequence repeats contains some sequences similar or identical to the described "iterons"

Read more

Summary

Introduction

The geminivirus and nanovirus families of DNA plant viruses have proved to be a fertile source of viral genomic sequences, clearly demonstrated by the large number of sequence entries within public DNA sequence databases. As a first step in a broad screen of geminivirus and nanovirus intergenic sequences for DNA segments important in controlling viral gene expression, we have 'mined' a large set of viral intergenic regions for transcriptional enhancers. We avoided using any test for evolutionary conservation of candidate elements, hoping to identify unique elements that may not necessarily be shared by large groups of related viruses For this first broad screen, the experimental rational used made two basic assumptions; 1} that viral intergenic regions contain an enrichment of DNA transcriptional regulatory elements; and 2} that important regulatory sequence elements are often duplicated within promoters, either directly repeated, or as inverted copies of sequence segments [22]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.