Abstract

MYC2 is well known as a positive regulator for abscisic acid (ABA) signaling but whether PLANT U-BOX PROTEIN 10 (PUB10) is involved in ABA responses has not been reported. Here, we show that the E3 ubiquitin ligase PUB10 modulates ABA signaling in Arabidopsis. PUB10ox (35S:PUB10-myc) and myc2 loss-of-function mutants were hyposensitive to ABA during germination, whereas pub10 loss-of-function and MYC2ox (35S:MYC2-GFP) mutants were hypersensitive. In addition, pub10 mutants showed hypersensitivity to high salt and osmotic stress during germination; by contrast, PUB10ox line displayed the opposite phenotype. ABA-induced expression of KIN2 (Cold- and ABA-Inducible Protein), RD22 (Responsive to Dehydration 22), ANAC019 (NAC Domain-Containing Protein 19), and ANAC055 (NAC Domain-Containing Protein 55) was enhanced in both pub10 and MYC2ox plants. Taken together, pub10 plants phenocopied MYC2ox plants, whereas PUB10ox plants phenocopied myc2 in ABA response. Our results provide evidence that PUB10 negatively regulates ABA signaling in Arabidopsis.

Highlights

  • Abscisic acid (ABA) is a phytohormone present in all vascular plants and it participates in various developmental and physiological processes during the plant life cycle, including seed development, seed dormancy, germination, and abiotic stress responses [1]

  • These results indicate that the altered germination rates observed in PUB10 and MYC2 mutants are dependent on ABA sensitivity, and that PUB10 and MYC2 act as positive and negative ABA response regulators, respectively

  • These opposing ABA sensitivities between PUB10 and MYC2 mutants are consistent with our previous observation that MYC2 protein is destabilized by the E3 ubiquitin ligase PUB10 [14]

Read more

Summary

Introduction

Abscisic acid (ABA) is a phytohormone present in all vascular plants and it participates in various developmental and physiological processes during the plant life cycle, including seed development, seed dormancy, germination, and abiotic stress responses [1]. Only a limited number of Plant U-box (PUB) E3 ligases have been characterized as both positive and negative regulators of ABA signaling [5]. MYC2 was first isolated as a transcription factor that binds to the RESPONSIVE DEHYDRATION 22 (RD22) promoter and subsequently characterized as a positive regulator of ABA signaling through genetic analysis [12, 13].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call