Abstract

Understanding how plant communities respond to temporal patterns of precipitation in water-limited ecosystems is necessary to predict interannual variation and trends in ecosystem properties, including forage production, biogeochemical cycling, and biodiversity. In North American shortgrass prairie, we measured plant abundance, functional traits related to growth rate and drought tolerance, and aboveground net primary productivity to identify: species-level responsiveness to precipitation (precipitation sensitivity Sspp ) across functional groups; Sspp relationships to continuous plant traits; and whether continuous trait-Sspp relationships scaled to the community level. Across 32 plant species, we found strong bivariate relationships of both leaf dry matter content (LDMC) and leaf osmotic potential Ψosm with Sspp . Yet, LDMC and specific leaf area were retained in the lowest Akaike information criterion multiple regression model, explaining 59% of Sspp . Most relationships between continuous traits and Sspp scaled to the community level but were often contingent on the presence/absence of particular species and/or land management at a site. Thus, plant communities in shortgrass prairie may shift towards slower growing, more stress-resistant species in drought years and/or chronically drier climate. These findings highlight the importance of both leaf economic and drought tolerance traits in determining species and community responses to altered precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call