Abstract

Proton/sulphate co-transport in the plasma membrane of root cells is the first step for the uptake of sulphate from the environment by plants. Further intracellular, cell-to-cell and long-distance transport must fulfil the requirements for sulphate assimilation and source/sink demands within the plant. A gene family of sulphate transporters, which may be subdivided into five groups, has been identified with examples from many different plant species. For at least two groups, proton/sulphate co-transport activity has been confirmed. It appears that each group represents sulphate transporters with distinct kinetic properties, patterns of expression, and cell/tissue specificity related to specific roles in the uptake and allocation of sulphate. High-affinity sulphate uptake and low-affinity vascular transport, as well as vacuolar efflux, are controlled by the nutritional status of the plant. Most notably there is an apparent increase in capacity for cellular sulphate uptake and vacuolar efflux when sulphur supply is limiting. Within the groups, the individual sulphate transporters may be further subdivided by differences in temporal, cellular and tissue expression. Many of the transporters are regulated by the nutritional status of the individual tissues, to optimize sulphate movement within and between sink and source organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.