Abstract

We measured net ecosystem exchange of carbon dioxide (CO2) (NEE) during wet and dry summers (2000 and 2001) across a range of plant communities at Mer Bleue, a large peatland near Ottawa, southern Ontario, Canada. Wetland types included ombrotrophic bog hummocks and hollows, mineral-poor fen, and beaver pond margins. NEE was significantly different among the sites in both years, but rates of gross photosynthesis did not vary spatially even though species composition at the sites was variable. Soil respiration rates were very different across sites and dominated interannual variability in summer NEE within sites. During the dry summer of 2001, net CO2 uptake was significantly smaller, and most locations switched from a net sink to a source of CO2 under a range of levels of photosynthetically active radiation (PAR). The wetter areas—poor fen and beaver pond margin— had the largest rates of CO2 uptake and smallest rates of respiratory loss during the dry summer. Communities dominated by ericaceous shrubs (bog sites) maintained similar rates of gross photosynthesis between years; by contrast, the sedge-dominated areas (fen sites) showed signs of early senescence under drought conditions. Water table position was the strongest control on respiration in the drier summer, whereas surface peat temperature explained most of the variability in the wetter summer. Q 10 temperature-respiration quotients averaged 1.6 to 2.2. The ratio between maximum photosynthesis and respiration ranged from 3.7:1 in the poor fen to 1.2:1 at some bog sites; it declined at all sites in the drier summer owing to greater respiration rates relative to photosynthesis in evergreen shrub sites and a change in both processes in sedge sites. Our ability to predict ecosystem responses to changing climate depends on a more complete understanding of the factors that control NEE across a range of peatland plant communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.