Abstract

Plant speciation and diversification strongly rely on structural changes in the nuclear genome, both at the whole ploidy and individual chromosome level. Phylogenetic, comparative mapping and cytological studies have provided insights into the evolutionary mechanisms that shape the plant genome. These include major genome alterations, such as whole genome duplication and hybridization (auto- and allopolyploidy), but also comprise the concomitant or independent occurrence of minor chromosome changes, such as aneuploidization and dysploidy (inversions and translocations). Despite the relevance of chromosomal instability as a driver for genome evolution and adaptation, little is yet known about the cellular mechanisms and processes that actually underlie these modifications. Here, in this paper, we provide a comprehensive overview of somatic and meiotic defects that lead to polyploidy or structural genome changes and discuss their relevance for plant genome evolution and speciation. In addition, we elaborate on the existence of stress-induced changes in chromosome and ploidy integrity in plants and their putative role in boosting adaptive genome evolution in hostile environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.