Abstract

Changes in resource availability can alter plant growth, the influence of plants on soil characteristics, and, ultimately, plant-soil feedback (PSF). Previous studies often show that invasive plants can outperform native plants under high but not low resource conditions. However, it remains unclear whether under low resource conditions, invaders can outperform natives in the long term by generating more positive or less negative PSFs. Using three non-native invasive and three non-invasive native annual Asteraceae plants, we conducted a two-phase pot experiment, where in the first, conditioning generation plants were grown to induce changes in soil characteristics, and in the second, bioassay generation plants were regrown to evaluate how they respond to these soils. Half of the pots received a nutrient addition treatment in the conditioning generation. We found significant species-specific effects of conditioning on most of the soil characteristics, and some soil characteristics were significantly correlated with bioassay generation biomass of a subset of species, but neither species nor invasive or native status affected bioassay generation biomass. All invasive species generated neutral PSFs across soil nutrient conditions. The native Emilia sonchifolia tended to condition the soil that favored its own growth more than others, and under low nutrient conditions, the native Eclipta prostrata conditioned the soil that disfavored its own growth more than others. These results indicate that invaders may not outperform natives through PSFs under low resource conditions, and increasing resource availability may change the types of PSFs for some native but not invasive plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call