Abstract

Understanding the spatial variability of ecosystem functions is an important step forward in predicting changes in ecosystems under global transformations. Plant functional traits are important drivers of ecosystem functions such as net primary productivity (NPP). Although trait-based approaches have advanced rapidly, the extent to which specific plant functional traits are linked to the spatial diversity of NPP at a regional scale remains uncertain.Here, we used structural equation models (SEMs) to disentangle the relative effects of abiotic variables (i.e., climate, soil, nitrogen deposition, and human footprint) and biotic variables (i.e., plant functional traits and community structure) on the spatial variation of NPP across China and its eight biomes. Additionally, we investigated the indirect influence of climate and soil on the spatial variation of NPP by directly affecting plant functional traits.Abiotic and biotic variables collectively explained 62.6 % of the spatial differences of NPP within China, and 28.0 %–69.4 % across the eight distinct biomes. The most important abiotic factors, temperature and precipitation, had positive effects for NPP spatial variation. Interestingly, plant functional traits associated with the size of plant organs (i.e., plant height, leaf area, seed mass, and wood density) were the primary biotic drivers, and their positive effects were independent of biome type. Incorporating plant functional traits improved predictions of NPP by 6.7 %–50.2 %, except for the alpine tundra on the Qinghai-Tibet Plateau.Our study identifies the principal factors regulating NPP spatial variation and highlights the importance of plant size traits in predictions of NPP variation at a large scale. These results provide new insights for involving plant size traits in carbon process models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.