Abstract
Hundreds of land plant lineages have independently evolved separate sexes in either gametophytes (dioicy) or sporophytes (dioecy), but 43% of all dioecious angiosperms are found in just 34 entirely dioecious clades, suggesting that their mode of sex determination evolved a long time ago. Here, we review recent insights on the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete. The canonical model of sex chromosome evolution in plants predicts that two sex-determining genes will become linked in a sex-determining region (SDR), followed by expanding recombination suppression, chromosome differentiation and, ultimately, degeneration. Experimental work, however, is showing that single genes function as master regulators in model systems, such as the liverwort Marchantia and the angiosperms Diospyros and Populus. In Populus, this type of regulatory function has been demonstrated by genome editing. In other systems, including Actinidia, Asparagus and Vitis, two coinherited factors appear to independently regulate female and male function, yet sex chromosome differentiation has remained low. We discuss the best-understood systems and evolutionary pathways to dioecy, and present a meta-analysis of the sizes and ages of SDRs. We propose that limited sexual conflict explains why most SDRs are small and sex chromosomes remain homomorphic. It appears that models of increasing recombination suppression with age do not apply because selection favours mechanisms in which sex determination depends on minimal differences, keeping it surgically precise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.