Abstract

Plants deploy a variety of secondary metabolites to fend off pathogen attack. Certain plants could accumulate coumarins in response to infection of bacteria, fungi, virus and oomycetes. Although coumarins are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we showed that a plant secondary metabolite daphnetin functions primarily by inhibiting Ralstonia solanacearum extracellular polysaccharides (EPS) production and biofilm formation in vitro, through suppressing genes expression of xpsR, epsE, epsB and lexM. Indeed, daphnetin significantly impaired virulence of R. solanacearum on tobacco plants. Transcriptional analysis suggested that daphnetin suppresses EPS synthesis cluster genes expression through transcriptional regulator XpsR. And daphnetin alter mainly virulence factors genes involved in type III secretion system, and type IV secretion system. R. solanacearum lacking EPS synthesis genes (epsB and epsC) that do not produce EPS, showed less virulence on tobacco plants. Molecular docking results indicated that the critical residues of domain in the binding pocket of the EpsB protein interact with daphnetin via conventional hydrogen bonding and hydrophobic interactions. Collectively, we found that daphnetin has potential as a novel virulence inhibitor of R. solanacearum, directly regulates EPS synthesis genes expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call