Abstract

Plant biology experiments in real and simulated microgravity have significantly contributed to our understanding of physiology and behavior of plants. How do plants perceive microgravity? How that perception translates into stimulus? And in turn plant's response and adaptation to microgravity through physiological, cellular, and molecular changes have been reasonably well documented in the literature. Knowledge gained through these plant biology experiments in microgravity helped to successfully cultivate crops in space. For instance, salad crop such as red romaine lettuce grown on the International Space Station (ISS) is allowed to incorporate into the crew's supplementary diet. However, the use of plants as a sustainable bio-regenerative life support system (BLSS) to produce fresh food and O2, reduce CO2 level, recycle metabolic waste, and efficient water management for long-duration space exploration missions requires critical gap filling research. Hence, it is inevitable to reflect and review plant biology microgravity research findings time and again with a new set of data available in the literature. With that in focus, the current article discusses phenotypic, physiological, biochemical, cell cycle, cell wall changes and molecular responses of plants to microgravity both in real and simulated conditions with the latest literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.