Abstract

Multiwalled carbon-nanotubes (MWCNT) and micro-structured carbon, such as biochar or activated carbon (AC), have been seen to significantly increase the growth indices of certain plant species such as maize (Zea mays L.). Seed imbibition is the stage where environmental factors that affect water transport across the seed coat barrier, make a large impact. This work explores the effect on water imbibition by maize seeds when the aqueous environment surrounding the seed is diluted by small concentrations (10 and 20 mg/l) of pristine MWCNT (p-MWCNT), carboxylate functionalized MWCNT (COO-MWCNT) and AC. The degree of sensitivity of the process to (i) large structural changes is seen by utilizing the nano (the MWCNT) and the micro (the AC) allotropic forms of carbon; (ii) to small changes in the purity and morphology of the p-MWCNT by utilizing 95% pure and 99% pure p-MWCNTs of slightly differing morphologies; and (iii) to MWCNT functionalization by using highly pure (97%) COO-MWCNT. Water imbibition was monitored over a 15 hour period by Near Infrared Thermography (NIRT) and also by seed weighing. Seed surface topography was seen by SEM imaging. Analysis of the NIRT images suggests rapid seed surface topological changes with the quantity of water imbibed. While further work is necessary to arrive at a conclusive answer, this work shows that the imbibition phase of the maize seed is sensitive to the presence of MWCNT even to small differences in the purity of the p-MWCNT and to small differences in the physicochemical properties of the medium caused by the hydrophilic COO-MWCNT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call