Abstract

In natural habitats plants can be exposed to brief and light contact with neighbouring plants. This mechanical stimulus may represent a cue that induces responses to nearby plants. However, little is known about the effect of touching on plant growth and interaction with insect herbivores. To simulate contact between plants, a soft brush was used to apply light and brief mechanical stimuli to terminal leaves of potato Solanum tuberosum L. The number of non-glandular trichomes on the leaf surface was counted on images made by light microscope while glandular trichomes and pavement cells were counted on images made under scanning electronic microscope. Volatile compounds were identified and quantified using coupled gas chromatography–mass spectrometry (GC-MS). Treated plants changed their pattern of biomass distribution; they had lower stem mass fraction and higher branch and leaf mass fraction than untouched plants. Size, weight and number of tubers were not significantly affected. Touching did not cause trichome damage nor change their total number on touched terminal leaves. However, on primary leaves the number of glandular trichomes and pavement cells was significantly increased. Touching altered the volatile emission of treated plants; they released higher quantities of the sesquiterpenes (E)-β-caryophyllene, germacrene D-4-ol and (E)-nerolidol, and lower quantities of the terpenes (E)-ocimene and linalool, indicating a systemic effect of the treatment. The odour of touched plants was significantly less preferred by the aphids Macrosiphum euphorbiae and Myzus persicae compared to odour of untouched plants. The results suggest that light contact may have a potential role in the detection of neighbouring plants and may affect plant-insect interactions.

Highlights

  • Coexistence with neighbouring plants is one of the most important challenges faced by plants

  • Touching resulted in significant reduction in plant height, stem weight, number of internodes and average branch diameter compared to untouched control plants

  • Leaf surface of touched plants was significantly higher than untouched plants (Table 1)

Read more

Summary

Introduction

Coexistence with neighbouring plants is one of the most important challenges faced by plants. The impossibility of escape from unfavourable growing conditions makes plants’ survival directly dependent on their sensitivity and ability to respond to subtle cues from their surroundings. Plants detect neighbouring plants by a range of cues including light quality [1, 2], PLOS ONE | DOI:10.1371/journal.pone.0165742. Plants detect neighbouring plants by a range of cues including light quality [1, 2], PLOS ONE | DOI:10.1371/journal.pone.0165742 November 9, 2016

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.