Abstract
A protocol for Coffea arabica L. cvs. Caturra and Catuai plant regeneration via indirect somatic embryogenesis (ISE) was established. Furthermore, a biolistic mediated genetic transformation protocol was optimized for Catuai callus aggregates. Maximum callus induction was obtained when Caturra (87%) and Catuai (67%) leaves were cultured on Murashige and Skoog medium with 18.56 µM kinetin and 4.52 µM2,4-dichlorophenoxyacetic acid (2,4-D). Catuai suspension cultures were established from embryogenic callus using liquid proliferation CP and Sli media and diffused light and darkness. The higher suspension cultures fresh weight was obtained using Erlenmeyer (1425.4 ± 354.9 mg) than Recipient for Automated Temporary Immersion System (RITA ® ) (518.6 ± 55.1 mg), whereas the dry weight of suspension cultures was not significantly affected by the culture system used. Higher number of embryos per vessel (307.6 ± 49.0) and their fresh weight (9.6 ± 1.5 mg) were obtained with semisolid R medium than S3 medium. The highest somatic embryo development (25.0 ± 2.7) and fresh weight (780.0 ± 85.4 mg) were obtained with 1 min of immersion every 8 hrs. Higher fresh weight of regenerated plantlets was obtained with liquid Yasuda medium in RITA® (124.6 ± 16.3 mg) than semisolid media (36.3 ± 11.3 mg). For genetic transformation, the effect of helium pressure (900 and 1550 psi), and target distance (9 and 12 cm) and plasmid (pCAMBIA 1301, pCAMBIA 1305.2 and pCAMBIA 1301-BAR) on transient uidA expression Catuai suspension cultures were evaluated. The highest number of blue spots was obtained using 900 psi and 9 cm (125.8 ± 17.3). Stable uidA expression was observed on Catuai callus aggregates transformed with pCAMBIA 2301 and cultured on 100 mg l -1 of kanamycin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.