Abstract

The fusion of protein science and peptide science opens up new frontiers in creating innovative biomaterials. Herein, a new kind of adhesive soft materials based on a natural occurring plant protein and short peptides via a simple co-assembly route are explored. The hydrophobic zein is supercharged by sodium dodecyl sulfate to form a stable protein colloid, which is intended to interact with charge-complementary short peptides via multivalent ionic and hydrogen bonds, forming adhesive materials at macroscopic level. The adhesion performance of the resulting soft materials can be fine-manipulated by customizing the peptide sequences. The adhesive materials can resist over 78 cmH2 O of bursting pressure, which is high enough to meet the sealing requirements of dural defect. Dural sealing and repairing capability of the protein-peptide biomaterials are further identified in rat and rabbit models. In vitro and in vivo assays demonstrate that the protein-peptide adhesive shows excellent anti-swelling property, low cell cytotoxicity, hemocompatibility, and inflammation response. In particular, the protein-peptide supramolecular biomaterials can in vivo dissociate and degrade within two weeks, which can well match with the time-window of the dural repairing. This work underscores the versatility and availability of the supramolecular toolbox in the easy-to-implement fabrication of protein-peptide biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.