Abstract
Nowadays, fluorescence detection has emerged as one of the most frequently used noninvasive biosensing methods to selectively monitor biological processes within living systems. Among fluorescent nanoparticles (NPs), gold nanoclusters (AuNCs) have been intensively studied because of their intrinsic fluorescence and their endowed biocompatible surface. Herein, we selected an abundant, low-cost, and sustainable plant protein, the pea protein isolate (PPI), for its excellent biocompatibility, biodegradability, and nonallergenic character to be employed as both a reducing and stabilizing agent to facilely produce AuNCs exhibiting a strong red fluorescence. Afterward, the formed AuNCs/PPI mixture was able to self-assemble into NPs (AuNCs/PPI NPs) with the size of about 100 nm simply through a dialyzing process. Taking advantage from the protein nature of PPI, AuNCs/PPI NPs demonstrate both excellent biocompatibility and colloidal stability. Moreover, AuNCs/PPI NPs showed a great capability when employed as a bioimaging probe for both in vitro and in vivo imaging. Finally, AuNCs/PPI NPs were coated with red blood cell (RBC) membranes to improve their blood circulation property and enhance their tumor enrichment ability to meet the requirement for practical use. Results convincingly show that such super NPs (RBC-coated AuNCs/PPI NPs) were able to successfully locate tumor in vivowith an excellent imaging capability, which provides a new strategy for bioimaging with fluorescent NPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.