Abstract

Mowing is a common practice in grassland management. It removes the majority of current year's aboveground plant biomass and thus substantial amounts of nutrients residing in plant tissues. The responses of plant aboveground biomass and nutrients to mowing stubble height is of great importance for developing sustainable mowing regimes, however, they are not well understood. We studied the effects of 4-year annual mowing at different height on plant aboveground biomass, plant N, P and N:P ratio, and soil nutrients in an Inner Mongolian steppe. Six stubble heights were set respectively at 14 cm (M14), 12 cm (M12), 10 cm (M10), 8 cm (M8), 6 cm (M6) and less than 0.3 cm (M0) height to ground surface. A no-mowing treatment (CK) was also included, making seven treatments. The results show that plant biomass production increased under light mowing (stubble height > 12 cm) but decreased under heavy mowing (stubble height < 6 cm), and the optimal stubble height for sustainable mowing was 6–12 cm. Plant N and P concentrations increased with mowing intensity (i.e. with the decrease of mowing stubble height). Plant N:P ratio decreased for some species, but no a directional change was detected in plant N:P ratio at the community level, nor in soil organic carbon and nutrient concentrations across the stubble height treatments. Our results indicate that plant biomass and N & P respond quickly to mowing height, whereas the response of soil chemical properties is insignificant over the 4-year period. To elucidate variation of species compensatory growth along mowing intensity gradient and the mutual feedback mechanism of soil-plant in mowing grassland, long-term study at permanent sites with changing stubble heights should be strengthened.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call