Abstract
Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier. Here, we report the transient expression of a recombinant protein comprising four tandem copies of M2e fused to an artificial self-assembling peptide (SAP) in plants. The hybrid protein was efficiently expressed in Nicotiana benthamiana using the self-replicating potato virus X-based vector pEff. The protein was purified using metal affinity chromatography under denaturing conditions. The hybrid protein was capable of self-assembly in vitro into spherical particles 15-30 nm in size. The subcutaneous immunization of mice with M2e-carrying nanoparticles induced high levels of M2e-specific IgG antibodies in serum and mucosal secretions. Immunization provided mice with protection against a lethal influenza A virus challenge. SAP-based nanoparticles displaying M2e peptides can be further used to develop a recombinant "universal" vaccine against influenza A produced in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.