Abstract

Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.

Highlights

  • IntroductionPrebiotics are non-digestible carbohydrate (CHO) molecules, including sugar polyols, poly and oligosaccharides, and resistant starches, as well as fiber that have a beneficial role in both the maintenance and progression of gut microflora

  • The results showed an increase in Bifidobacteria and Lactobacilli growth, inhibiting the growth of harmful bacteria, such as Bacteroides and some Clostridium species

  • The acceptance of prebiotics as a dietary food ingredient has been found effective in nourishing the gut microbiota

Read more

Summary

Introduction

Prebiotics are non-digestible carbohydrate (CHO) molecules, including sugar polyols, poly and oligosaccharides, and resistant starches, as well as fiber that have a beneficial role in both the maintenance and progression of gut microflora. Prebiotics are known for their ability to nourish gut microbes present in the gastrointestinal tract (GIT) and substantially improve their metabolic activity, enhancing digestion, nutrient absorption ability, and the immune system, while curbing the growth of pathogenic microbes [1]. These significant improvements show a positive effect on human health [2]. The ability of prebiotics to sustain themselves in acidic environments and remain resistant to distinct digestive

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call