Abstract

Plant phenolics, known to exert beneficial effects on human health, were supplemented to cultures of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) to assess their effect on its adhesive capacity and the abundancy of individual proteins. The presence of resveratrol and ferulic acid during bacterial growth stimulated adhesion of NCFM to mucin and human intestinal HT-29 cells, while tannic acid improved adhesion only to HT-29 cells and caffeic acid had very modest effect overall. Some dosage dependence was found for the four phenolics supplemented at 100, 250, and 500 μg mL-1 to the cultures. Notably, 500 μg mL-1 ferulic acid only stimulated adhesion to mucin. Analyses of differential whole-cell as well as surface proteomes revealed relative abundancy changes for a total of 27 and 22 NCFM proteins, respectively. These changes include enzymes acting in metabolic pathways, such as glycolysis, nucleotide metabolism, and stress response, as well as known moonlighting or surface-associated proteins. The five plant phenolics found in various foods stimulate the adhesive capacity of NCFM in diverse ways and elicit relative abundancy changes of specific proteins, providing molecular level insight into the mechanism of the putative beneficial effects of the polyphenols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call