Abstract

In our study, plant polyphenol-inspired chemistry is explored to nano-engineer the topological and chemical structures of commercial melamine sponge surface for preparing superhydrophobic sponges. Briefly, tannic acid (TA, a typical plant polyphenol) is applied to induce the co-assembly of silica nanoparticles (SiO2) and silver ions (Ag+) to form SiO2@TA@Ag nanostructures on a melamine sponge surface. After further chemical fluorination, the superhydrophobic sponge with a “lotus leaf-mimic” surface is formed. Surface topological/chemical structures, superhydrophobic property and anti-combustion characteristics of the sponge are examined by a series of characterization techniques, including scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle measurements, combustion/heating test, etc. The superhydrophobic sponge presents an adsorption capacity of 69–153 times of its own weight toward various oils/organic solvents, and exhibits excellent recycling ability evidenced by over 100-cycled uses. Continuous oil/water separation apparatus is also set up through equipping the superhydrophobic sponge on a peristaltic pump, realizing the clean-up of oils and organic solvents from water continuously. Together with the facile, easy-to-scale-up and substrate non-selective features of plant polyphenol-inspired chemistry, the superhydrophobic sponge and the surface nano-engineering method would hold great promise for the effective treatment of oil spillages and organic discharges, achieving high sustainability to energy and environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call