Abstract

Competition for pollination is thought to be an important factor structuring flowering in many plant communities, particularly among plant taxa with morphologically similar and easily accessible flowers. We examined the potential for heterospecific pollen transfer (HPT) in a community of four Acacia species in a highly seasonal tropical habitat in Mexico. Partitioning of pollen flow among sympatric species appears to be achieved, in part, through segregation of flowering in seasonal time, and interspecific differences in pollinator guilds. However, two coflowering species (Acacia macracantha and Acacia angustissima) shared multiple flower visitors, raising the possibility of HPT. Each of these coflowering species showed high intraspecific daily synchrony in pollen release, but dehisce at different times of day. Pollinators rapidly harvested available pollen from one species before abandoning it to visit the flowers of the second later in the day. The activity of shared pollinators, predominantly bees, is thus structured throughout the day, and potential for HPT reduced. Suggestive evidence in favour of a resource partitioning explanation for this pattern is provided by the fact that A. macracantha showed significantly greater intraspecific synchrony when coflowering with a potential competitor (A. angustissima) than when flowering alone. We discuss our results in light of previous work on coflowering acacia assemblages in Tanzania and Australia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.