Abstract
The ability of two biotinylating reagents, sulfosuccinimidobiotin and sulfosuccinimidyl 2-(biotinamido)ethyl-1,3'-dithiopropionate, to label plasma membrane proteins was examined. These compounds form covalent bonds with the free amino groups of proteins and label the proteins with biotin. Biotinylated proteins can be detected with avidin-peroxidase staining. Protoplasts isolated from embryogenic Daucus carota suspension cells were labeled with biotin and the membranes were separated on linear sucrose gradients. The conditions used for labeling the protoplasts did not cause protoplast rupture or loss of viability. The distribution of the biotin label in these linear sucrose gradients was analyzed and compared to the distribution of vanadate-sensitive ATPase activity, a marker for the plasma membrane. Both the biotin label and the vanadate-sensitive ATPase activity were strongly localized in the gradient at peak density of 1.16 gram per cubic centimeter. When the protoplast surface was labeled, biotinylated polypeptides were detected after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and polypeptides of 153, 94, 51, 30, 20, 17, and 14 kilodaltons were shown to be plasma membrane in origin. When a crude membrane pellet was labeled, numerous biotinylated polypeptides were distributed throughout the gradient. Because the position of the biotin label in the gradient is strongly correlated with the distribution of vanadate-sensitive ATPase, it is concluded that these biotinylating reagents are effective and reliable labels for proteins of the plant plasma membrane. Furthermore, these labels permit the positive identification of plasma membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and can serve as convenient markers for solubilization and purification of these proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.