Abstract

BackgroundThe activity of degradative nucleases responsible for genomic DNA digestion has been observed in all kingdoms of life. It is believed that the main function of DNA degradation occurring during plant programmed cell death is redistribution of nucleic acid derived products such as nitrogen, phosphorus and nucleotide bases. Plant degradative nucleases that have been studied so far belong mainly to the S1-type family and were identified in cellular compartments containing nucleic acids or in the organelles where they are stored before final application. However, the explanation of how degraded DNA components are exported from the dying cells for further reutilization remains open.ResultsBioinformatic and experimental data presented in this paper indicate that two Arabidopsis staphylococcal-like nucleases, named CAN1 and CAN2, are anchored to the cell membrane via N-terminal myristoylation and palmitoylation modifications. Both proteins possess a unique hybrid structure in their catalytic domain consisting of staphylococcal nuclease-like and tRNA synthetase anticodon binding-like motifs. They are neutral, Ca2+-dependent nucleaces showing a different specificity toward the ssDNA, dsDNA and RNA substrates. A study of microarray experiments and endogenous nuclease activity revealed that expression of CAN1 gene correlates with different forms of programmed cell death, while the CAN2 gene is constitutively expressed.ConclusionsIn this paper we present evidence showing that two plant staphylococcal-like nucleases belong to a new, as yet unidentified class of eukaryotic nucleases, characterized by unique plasma membrane localization. The identification of this class of nucleases indicates that plant cells possess additional, so far uncharacterized, mechanisms responsible for DNA and RNA degradation. The potential functions of these nucleases in relation to their unique intracellular location are discussed.

Highlights

  • The activity of degradative nucleases responsible for genomic DNA digestion has been observed in all kingdoms of life

  • What we find interesting is that this Calcium dependent nuclease (CAN) nucleases motive almost exactly corresponds to the tRNA synthetases domain responsible for the recognition of the tRNA anticodon loop [24]

  • To verify the data obtained from the microarray experiments we examined whether suggested mRNA expression profiles of CAN1 and CAN2 genes correspond to any endogenous nucleolytic activity

Read more

Summary

Introduction

The activity of degradative nucleases responsible for genomic DNA digestion has been observed in all kingdoms of life. It is believed that the main function of DNA degradation occurring during plant programmed cell death is redistribution of nucleic acid derived products such as nitrogen, phosphorus and nucleotide bases. Plant degradative nucleases that have been studied so far belong mainly to the S1-type family and were identified in cellular compartments containing nucleic acids or in the organelles where they are stored before final application. Deoxyribonucleases are a large group of enzymes characterized by considerable structural and functional diversity. In eukaryotic cells they are involved in a range of cellular functions, including DNA repair, recombination and genome degradation. Direct evidence of nuclease function in PCD has been reported for another member of this family, ZEN1, which is responsible for DNA degradation during xylogenesis [7]. The expression of other S1 type nucleases has been identified in various tissues undergoing PCD [8,9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call