Abstract

A multi-view stereo vision system for true 3D reconstruction, modeling and phenotyping of plants was created that successfully resolves many of the shortcomings of traditional camera-based 3D plant phenotyping systems. This novel system incorporates several features including: computer algorithms, including camera calibration, excessive-green based plant segmentation, semi-global stereo block matching, disparity bilateral filtering, 3D point cloud processing, and 3D feature extraction, and hardware consisting of a hemispherical superstructure designed to hold five stereo pairs of cameras and a custom designed structured light pattern illumination system. This system is nondestructive and can extract 3D features of whole plants modeled from multiple pairs of stereo images taken at different view angles. The study characterizes the systems phenotyping performance for 3D plant features: plant height, total leaf area, and total leaf shading area. For plants having specified leaf spacing and size, the algorithms used in our system yielded satisfactory experimental results and demonstrated the ability to study plant development where the same plants were repeatedly imaged and phenotyped over the time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.