Abstract

Serpentine soils are drought-prone and rich in heavy metals, and plants growing on serpentine soils host distinct microbial communities that may affect plant survival and phenotype. However, whether the rhizosphere communities of plants from different soil chemistries are initially distinct or diverge over time may help us understand drivers of microbial community structure and function in stressful soils. Here, we test the hypothesis that rhizosphere microbial communities will converge over time (plant development), independent of soil chemistry and microbial source. We grew Plantago erecta in serpentine or nonserpentine soil, with serpentine or nonserpentine microbes and tracked plant growth and root phenotypes. We used 16S rRNA gene barcoding to compare bacterial species composition at seedling, vegetative, early- and late-flowering phases. Plant phenotype and rhizosphere bacterial communities were mainly structured by soil type, with minor contributions by plant development, microbe source and their interactions. Serpentine microorganisms promoted early flowering in plants on nonserpentine soils. Despite strong effects of soil chemistry, the convergence in bacterial community composition across development demonstrates the importance of the plant-microbe interactions in shaping microbial assembly processes across soil types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.