Abstract
Arbuscular mycorrhiza (AM), a type of plant-fungal endosymbiosis, and nodulation, a bacterial-plant endosymbiosis, are the most ubiquitous symbioses on earth. Recent findings have established part of a shared genetic basis underlying these interactions. Here, we approach root endosymbioses through the lens of the homology and modularity concepts aiming at further clarifying the proximate and ultimate causes for the establishment of these biological systems. We review the genetics that underlie interspecific signaling and its concomitant shift in genetic programs for either partner. Also, through the comparative analysis of genetic modules shared by AM and nodulation symbioses, we identify fundamental nodes in these networks, suggesting the elemental steps that may have permitted symbiotic adaptation. Here, we show that this approach, allied to recent technical advances in the study of genetic systems architecture, can provide clear testable hypotheses for the advancement of our understanding on the evolution and development of symbiotic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.